Hydrogen Exchange with Adsorbed Methanol and Methoxy on Nickel/Alumina Raymond L. Flesner and John L. Falconer Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309-0424 Received January 18, 1994; revised July 19, 1994 Hydrogen isotope exchange with adsorbed CH₃OH and coadsorbed CO + H₂ (which form CH₃O) was studied on a Ni/Al₂O₃ catalyst by temperature-programmed reaction and desorption (TPR, TPD). Since both CH₃OH and CH₃O are adsorbed on the Al₂O₃ support, but H₂ adsorbs and dissociates on the Ni surface, H atom spillover onto the Al₂O₃ surface is an important step in the exchange process. Hydroxyl hydrogens in CH₃OH exchange orders of magnitude more rapidly than methyl hydrogens, and both types of exchange are faster than CH₃OH hydrogenation to CH4. Thus, TPR allows these processes to be separated in time, and exchange during TPR also allows different adsorbed species to be distinguished. Coadsorbed CO + H₂ exhibit two exchange processes, one of which is different from those observed for adsorbed CH₃OH. These differences demonstrate that CH₃OH and CO + H₂ do not form identical species on Al₂O₃. Coadsorption of CO + H₂ forms H on Al₂O₃ in addition to CH₃O, and this H results in an H₂ TPD peak in addition to H₂ that forms from CH₃O decomposition. Exchange is inhibited significantly by CO adsorbed on Ni, apparently because CO blocks H₂ adsorption sites. © 1994 Academic Press, Inc. ## INTRODUCTION Temperature-programmed reaction and desorption (TPR, TPD) have shown that two types of CO hydrogenation processes take place on Ni/Al₂O₃ catalysts (1-3). During TPR, when the catalyst temperature is ramped in H₂ flow following CO adsorption on the Ni surface, two distinct CH₄ peaks are observed; these CH₄ peaks correspond to the two processes. Some of the CO on Ni hydrogenates to form a low-temperature CH₄ peak, and the rest of the CO spills over onto Al₂O₃ as a CH₃O species (1, 4). Hydrogenation of the CH₃O results in a CH₄ peak at higher temperature. The CH₃O species can be formed at higher coverages by coadsorption of CO and H₂ at 385 K. Similarly, CH₃OH, which adsorbs directly on the Al₂O₃ surface and forms a CH₃O species (5, 6), hydrogenates during TPR to form a CH₄ peak at the same location as the high-temperature CH_4 peak from coadsorbed $CO + H_2$. Methanol also decomposes during TPD to form CO and H_2 in a spectrum that is similar to that for CO and H_2 coadsorbed at 385 K (7). The similarity of CH₃OH and CH₃O TPR and TPD spectra prompted a more detailed comparison of the two types of adsorbed species. Exchange between adsorbed species and gas-phase hydrogen during TPR is shown to be an effective method of distinguishing adsorbed CH₃O and CH₃OH. The H₂ (or D₂) dissociates on the Ni surface before exchanging with CH₃OH (or CH₃O) adsorbed on the Al₂O₃ surface. Since the exchange involves spillover, these exchange experiments also provide a method to determine the rate of spillover. The hydroxyl hydrogens in CH₃OH exchange faster than the methyl hydrogens, and exchange is faster than hydrogenation to CH₄. Two distinct exchange processes were also observed for CH₃O formed from coadsorbed CO + H₂: one exchange was for methyl hydrogens, but the faster exchange did not correspond to hydroxyl exchange. That is, identical species are not formed on Al_2O_3 from CH_3OH and $CO + H_2$. Another way to characterize the species formed from coadsorbed CO + H₂ is to study the low-temperature H₂ desorption peak (~450 K) observed during TPD. This H₂ desorption peak is distinct from the H₂ desorption observed due to CH₃O decomposition, and it is only observed if interrupted TPR is carried out prior to TPD. The low-temperature H₂ peak was not observed for TPD of adsorbed CH₃OH, however. Thus, a series of experiments was carried out in which CH₃O was formed on the Al₂O₃ surface of Ni/Al₂O₃ and interrupted TPR was carried out to various temperatures. Subsequently, TPD or TPR was carried out to study the desorption and reaction properties of the remaining species. Similar to the exchange experiments, the TPD experiments also show that CO + H₂ do not coadsorb to form CH₃OH, but form adsorbed H in addition to CH₃O. # **EXPERIMENTAL METHODS** TPD and TPR experiments were carried out on a 5.1% Ni/Al₂O₃ catalyst and on Al₂O₃. Methanol was adsorbed at 300 or 385 K, and CO + H₂ (or D₂) were coadsorbed at 385 K. For TPR, the catalyst temperature was raised at 1 K/s in H_2 , D_2 , H_2/Ar , or D_2/Ar flow. For TPD, the catalyst temperature was raised at 1 K/s in Ar or He flow. The flow and detection system has been described previously (3, 8). Briefly a 100-mg sample of reduced and passivated Ni/Al₂O₃ catalyst or a 100-mg sample of Al₂O₃ was placed in a 1-cm OD tubular quartz downflow reactor, which was heated by a temperature-programmed electric furnace. A 0.5-mm OD, chromel-alumel thermocouple, placed in the center of the catalyst bed, measured catalyst temperature and provided feedback to the temperature programmer. Species leaving the catalyst surface were detected immediately downstream of the reactor by a computer-controlled UTI quadrupole mass spectrometer. The computer system recorded the catalyst temperature and the amplitudes of a number of mass peaks simultaneously. Both the Ni/Al₂O₃ catalyst and the Al₂O₃ were pretreated at 773 K in H₂ flow for 2 h at the start of each day of experiments. Methanol (1-3 μ l liquid) was adsorbed at 300 or 385 K by allowing liquid CH₃OH to evaporate into the carrier gas upstream of the catalyst. When CH₃OH was adsorbed on Al₂O₃, TPR was carried out in a 7% D₂/ 93% Ar mixture. For Ni/Al₂O₃, TPR was carried out in $100\% D_2$, 5% $H_2/95\% Ar$, 3% $D_2/97\% Ar$, $10\% D_2/90\%$ Ar, or 100% H₂. For deuterated methanol (CH₃OD), TPR was carried out in 100% D₂, 10% D₂/90% Ar, and 100% H₂. In one experiment, ¹³CO was adsorbed after CH₃OH adsorption on Ni/Al₂O₃. Carbon monoxide and H₂ (or D₂) were coadsorbed at 385 K by injecting CO pulses into the H₂ (or D₂) carrier gas. When 12 CO was used, 150 μ L (STP) pulses of a 10% CO/He mixture were used. When 13 CO was used, 50 μ l (STP) pulses of pure 13 CO were used. Temperature-programmed desorption (TPD) was carried out *after* interrupted TPR. For these experiments, CH_3OH or $CO + H_2$ (or D_2) was adsorbed on the catalyst as described above. The catalyst temperature was raised in H_2 or D_2 to temperatures from 440 to 500 K and the catalyst was then cooled at approximately 10 K/s. Next, TPD was carried out in He or Ar flow. For some experiments the catalyst was exposed to D_2 or ^{13}CO at 300 K prior to TPD. This was done to displace H_2 from Ni. During TPR and TPD, the mass spectrometer signals for CO, CO₂, CH₄, H₂, D₂, and HD were monitored. The mass 28 signal was corrected for cracking of CO₂ to form CO in the mass spectrometer. Argon was used instead of He when D₂ at mass 4 was monitored. Because methane and water crack in the mass spectrometer, masses 15–20 were used to detect the various CH_xD_{4-x} products. These masses do not yield unique product identification, but the main emphasis in this paper is on the H₂, HD, and D₂ signals, and previous studies have reported on the rate of CH₄ formation during TPR (1, 9). Masses 31 (CH₃OH) and 46 ((CH₃)₂O) were also monitored. The 5.1% Ni/Al₂O₃ catalyst was prepared by impregnation of Kaiser A-201 alumina with nickel nitrate. The impregnated Al₂O₃ was dried in vacuum and then directly reduced in H₂ using procedures described previously (3). The final reduction temperature was 775 K. The weight loading was measured by atomic absorption. ## RESULTS Methanol Hydrogenation and Exchange Methanol adsorbed on alumina. Following CH₃OH adsorption at 300 K on Kaiser A-201 Al₂O₃, TPR was carried out in 7% D₂/93% Ar flow. The presence of gasphase D₂ or H₂ does not affect the rate of CH₃OH decomposition, which occurs mostly above 700 K (7), where H₂ and CO form during TPD. A significant amount of D₂ was only consumed above 550 K, and two minima were observed in the D₂ signal near 660 and 750 K. Methanol adsorbed on nickel/alumina. A TPR in 100% D₂ flow, following CH₃OH adsorption on Ni/Al₂O₃ at 385 K in H₂ flow, formed CD₄ as the dominant methane product. The single CD₄ peak near 540 K was essentially the same as the CH₄ peak obtained for TPR in H₂ flow, when CH₃OH was adsorbed at either 300 or 385 K (9, 10). In addition to CD₄, partially deuterated methane (CD₃H and CD₂H₂) signals were observed, but they were approximately 15 and 10% of the CD₄ signal amplitude, respectively. The CDH₃ and CH₄ signals were even smaller, but all methane peaks have similar shapes and peak temperatures. Because of the various cracking fractions and the presence of both CD₄ and D₂O at mass 20, accurate determination of the amounts of the various methane products was difficult. The main interest here, however, is not on the methane peaks, since they have been studied extensively by TPR in H₂ flow (9, 10). Instead, the emphasis is on the various hydrogen peaks, and thus TPR was carried out in either 3% D₂/97% Ar or 10% D₂/90 Ar flow so that changes in the D₂ signals could be more easily measured. The use of Ar as an inert gas allowed the D₂ signal at mass 4 to be detected, but the doubly ionized Ar signal at mass 20 prevented detection of the CD₄ parent peak. Thus, methane formation was monitored by masses 18 and 16. As shown in Fig. 1 for TPR in 3% D_2 flow, CD_4 , as monitored by mass 18, formed in a single peak at 550 K. The high-temperature tail for mass 18 represents cracking of D₂O, as was verified by TPR in H₂ flow. The mass 16 signal in Fig. 1 is due to cracking of several deuterated methane products. In contrast to TPR in 100% D₂, in 3% D₂ a significant fraction of the CH₃OH decomposed to form CO, which desorbed instead of being hydrogenated to CD₄. FIG. 1. TPR spectra in 3% $D_2/97\%$ Ar flow for 3 μ l CH₃OH adsorbed on 5.1% Ni/Al₂O₃ at 300 K in H₂ flow. The CO, mass 18 (CD₄ cracking, H₂O), and mass 16 (CH₄, CD₄ cracking) signals are shown. As shown in Fig. 2, H₂ and HD desorbed in two distinct peaks from Ni/Al₂O₃ when TPR of adsorbed CH₃OH was carried out in 3% D₂ flow. The H₂ and HD peaks near 400 K were accompanied by significant D₂ consumption, which was attributed to exchange with adsorbed CH₃OH, as will be discussed later. The D₂ consumption peak near 580 K approximately coincided with the formation of CD₄ (Fig. 1). The amount of D₂ consumed appeared larger than the amount needed to form HD, CD₄, and D₂O, but accurate measurements were complicated by calibrations. The HD calibration was taken as an average of the H₂ and D₂ calibrations, and as D₂ was consumed all calibrations changed so that the H₂, HD, and D₂ signals are only qualitative measurements of the surface processes. When 10% D₂ was used during TPR and less CH₃OH was adsorbed, the fraction of the D₂ flow consumed was smaller and mass balances were better. Deuterated methanol adsorbed on nickel/alumina. The use of isotopically labeled methanol (CH₃OD) allows us to determine if the methyl and hydroxyl hydrogens exhibit different behavior during TPR. When TPR of adsorbed CH₃OD was carried out in H₂ flow, D₂ and HD peaks were observed near 365 K, but neither HD nor D₂ desorbed above 400 K. When TPR of adsorbed CH₃OD was carried out in 100% D₂ flow, neither H₂ nor HD formed below 400 K, and as shown in Fig. 3, HD and H₂ formed in peaks centered at 510 K. For the high concentra- FIG. 2. TPR spectra in 3% D₂/97% Ar flow for $3 \mu l$ CH₃OH adsorbed on 5.1% Ni/Al₂O₃ at 300 K in H₂ flow. The D₂, HD, and H₂ signals are shown. tion of D_2 in the gas phase, mostly HD formed and the methane product was mostly CD_4 . Coadsorbed methanol and carbon monoxide on nickel/ alumina. When CH₃OH and ¹³CO were coadsorbed on FIG. 3. TPR spectra in D₂ flow of H₂, HD, and CD₄ for adsorption of 1 μ l CH₃OD on 5.1% Ni/Al₂O₃ at 300 K in H₂ flow. FIG. 4. TPR spectra of H_2 and HD from TPR in D_2 flow over 5.1% Ni/Al₂O₃. Approximately 1 μ l ¹²CH₃OH was adsorbed at 300 K and then ¹³CO was adsorbed at 300 K in D_2 flow. Ni/Al₂O₃ at 300 K (CH₃OH adsorbed first), HD and H₂ formed in essentially one peak during TPR in 100% D₂ flow. As shown in Fig. 4, the peak maximum was at approximately 510 K and most of the dihydrogen was FIG. 5. TPR spectra of ¹²CO, ¹³CO, ¹²CD₄, and ¹³CD₄ for same experiment as in Fig. 4. FIG. 6. TPD spectra of H_2 , HD, and D_2 . After CH_3OH was adsorbed on 5.1% Ni/Al₂O₃ at 300 K in H_2 flow, a TPR experiment in D_2 flow was interrupted at 445 K and the sample rapidly cooled prior to the TPD in Ar flow. HD. The ¹²CD₄ signal (Fig. 5) was the same as that observed when CH₃OH was adsorbed alone. The ¹³CD₄ (Fig. 5) formed in two distinct peaks, due to hydrogenation of ¹³CO adsorbed on Ni (lower-temperature peak) and spillover to form ¹³CH₃O, which was then hydrogenated to ¹³CH₄ (1). The high-temperature ¹³CD₄ peak is similar in shape and location to the ¹²CD₄ peak. As shown in Fig. 5, only a small amount of ¹³CO desorbed, unreacted, in two distinct peaks, and ¹²CO formed one peak. Interrupted TPR and TPD on nickel/alumina. An interrupted TPR was carried out on Ni/Al₂O₃ by adsorbing CH₃OH at 300 K and then raising the catalyst temperature in D₂ flow only to 445 K before cooling the catalyst. This temperature corresponds to that where the first D₂ consumption peak (Fig. 2) was essentially complete. A TPD spectrum was then obtained, by raising the catalyst temperature in Ar flow, to determine what species remained on the surface. As shown in Fig. 6, H₂, HD, and D₂ desorbed during the TPD. Carbon monoxide formed in a peak near the H₂ peak (7), but for clarity it is not included. The D₂, HD, and H₂ peaks have maximum at 480, 520, and 526 K, respectively. In addition, HD and D₂ exhibited small peaks below 400 K. Interrupted TPR of adsorbed CH_3OH was carried out in H_2 flow to a higher temperature (480 K) before cooling, and the subsequent TPD in He flow is shown in Fig. 7. As reported previously for a normal TPD following CH_3OH FIG. 7. H₂ and CO TPD spectra on 5.1% Ni/Al₂O₃ following CH₃OH (1 μ l) adsorption at 300 K, and interrupted TPR in H₂ flow to 480 K. adsorption (7), CO and H_2 desorbed simultaneously, with a large peak near 500 K and a smaller peak near 650 K. As the result of the interrupted TPR, a small H_2 peak was also observed at 410 K. When the interrupted TPR procedure to 480 K was repeated but CO was adsorbed in H_2 flow at 300 K prior to TPD, the H_2 peak at 410 K was absent. # CO and $H_2(D_2)$ Coadsorption on Nickel/Alumina When CO and D₂ were coadsorbed at 385 K on Ni/Al₂O₃, CD₃O formed on the Al₂O₃ support by a spillover process (1, 11). During TPR in 100% H₂, the methane produced was 98% CH₄, and even for TPR in 5% H₂/95% Ar, 95% of the methane was CH₄. The remainder was CH₃D. As shown in Fig. 8, CH₄ formed in two distinct peaks due to hydrogenation of CO on Ni (low-temperature peak) and hydrogenation of methoxy on Al₂O₃ (high-temperature peak) (1). Both HD and D₂ formed during TPR in two distinct peaks (450 and 510 K) as shown in Fig. 8. The HD signal was 10 times the D₂ signal, but the peak shapes were identical. Interrupted TPR and TPD. The following procedure was used to study adsorbed CH₃O and Ni/Al₂O₃: - (1) CO + H₂ coadsorption at 385 K for 30 min - (2) Interrupted TPR in 100% H, - (3) Rapid cooling to 300 K - (4) TPD in He flow The coadsorption step formed CH₃O on Al₂O₃ and also resulted in CO adsorbed on the Ni surface (12). The interrupted TPR removed some CO from the Ni surface, either by forming gaseous CH₄ or by spillover to form additional CH₃O on the Al₂O₃ surface. Figures 9 and 10 show the H₂ and CO desorption obtained during the TPD experiments for interruption temperatures between 300 and 500 K. In addition, CO₂ and CH₄ formed, and in each case their total amount was less than 25% of the amount of CO that desorbed. Methane formed in a peak between 543 and 550 K, and CO₂ formed on a peak near 670 K, with a smaller peak at 520 K. Hydrogen desorbed in three distinct peaks (Fig. 9), and the low-temperature peak was not observed in the absence of an interrupted TPR. As shown in Table 1 and Fig. 9, the peak temperature and the amount of the low-temperature peak increased as the interruption temperature increased. The peak temperatures of the other two peaks remained relatively constant. The H₂ peaks at 525 and 600 K result from decomposition of CH₃O (11, 12) and thus are accompanied by CO formation (Fig. 10). As the interruption temperature was increased, the onset temperature for CO desorption increased. The peak temperatures for CO desorption remained almost constant. Similar results were obtained when CD_3O was formed by coadsorption of CO and D_2 at 385 K. Figure 11 shows the TPD spectra obtained when interrupted TPR in D_2 flow was carried out to 480 K before the TPD. Three D_2 desorption peaks were observed that were similar to the FIG. 8. TPR spectra in 100% H₂ flow for CO and D₂ coadsorbed at 385 K for 20 min. Only the HD, D₂, and CH₄ signals are shown. FIG. 9. H_2 TPD spectra on 5.1% Ni/Al₂O₃ for CO adsorbed at 385 K for 30 min in H_2 flow. An interrupted TPR in H_2 was carried out to the indicated temperature prior to TPD. H_2 peaks in Fig. 9. A small amount of HD formed, apparently due to H_2 and HD impurities in the D_2 . In a separate experiment, CO and H₂ was coadsorbed at 385 K, but interrupted TPR was carried out in D₂ flow, FIG. 10. CO TPD spectra for the same conditions as Fig. 9. $TABLE \ 1$ Amounts Desorbed during TPD after Interrupted TPR in H_2 | Interruption temperature (K) | Amounts desorbed (µmol/g catalyst) | | | | | |------------------------------|------------------------------------|-------------------------------------|-----|-----|----| | | Total
H ₂ | H ₂ low-temperature peak | со | СН₄ | CO | | 500 | 326 | 132 | 108 | 6 | 22 | | 480 | 337 | 112 | 132 | 5 | 20 | | 470 | 376 | 124 | 164 | 11 | 16 | | 460 | 380 | 108 | 173 | 12 | 20 | | 440 | 335 | 68 | 170 | 13 | 15 | | 300 (No Interrupt) | 296 | 0 | 171 | 13 | 15 | Note. H₂ + CO were coadsorbed at 385 K. and only to 400 K. As expected from the spectra in Fig. 8, not much HD or H_2 formed during the TPR to 400 K. A subsequent TPD showed no low temperature H_2 or HD peak and only a small amount of HD formed, near 500 K. Displacement from the nickel surface. To study the low temperature H_2 peak in Fig. 9, the following procedure was used: - (1) CO and H₂ coadsorption at 385 K for 30 min - (2) Interrupted TPR in H₂ to 480 K - (3) Rapid cooling to 300 K FIG. 11. TPD spectra for D_2 , CO, and HD for CO and D_2 coadsorbed at 385 K for 30 min on 5.1% Ni/Al₂O₃. Prior to TPD, interrupted TPR was carried out to 480 K in D_2 flow. FIG. 12. D_2 and HD spectra for TPD when CO and H_2 were coadsorbed at 385 K for 30 min on 5.1% Ni/Al₂O₃. Prior to TPD, interrupted TPR was carried out to 480 K in D_2 flow. - (4) D₂ flow at 300 K - (5) TPD in He flow The D_2 exposure was used in order to exchange any hydrogen adsorbed on Ni with deuterium. However, the H_2 TPD spectrum was the same as that in Fig. 9 for an interruption temperature of 480 K. A total of 19 μ mol HD/g catalyst also desorbed below 500 K. In a similar experiment, step 4 was replaced by ^{13}CO exposure at 300 K. As reported previously (11,12) for ^{13}CO adsorption after $^{12}CH_3O$ formation, ^{13}CO desorbed in a peak at 475 K. However, in contrast to Fig. 9, the low-temperature H_2 peak was absent and the total amount of H_2 desorption was lower by 13 μ mol/g catalyst. The H_2 peak at 525 K was larger and broader than in Fig. 9. Interrupted TPR, exchange, and TPD. The following procedure was used to study the interaction between CH_3O and D_2 : - (1) CO and H₂ coadsorption at 385 K for 30 min - (2) Interrupted TPR in D₂ flow to 480 K - (3) Rapid cooling to 300 K - (4) TPD in He flow During the interrupted TPR, 26% of the original CH₃O was hydrogenated to methane. As shown in Fig. 12, both D₂ (140 μ mol/g catalyst) and HD (100 μ mol/g catalyst) desorbed in three peaks during TPD. The amount of H₂ that desorbed was insignificant. Approximately 73% of the total hydrogen atoms (H + D) leaving the surface was deuterium. ## DISCUSSION Hydrogen Exchange with Methanol Two distinct HD and H₂ peaks are observed during TPR in D₂ flow of adsorbed CH₃OH on Ni/Al₂O₃. These peaks are attributed to exchange between D₂ and CH₃OH for the following reasons: - As HD and D_2 form, D_2 is consumed (Fig. 2) and no other deuterium-containing products are observed until CD_4 forms. - During TPD, CH₃OH does not start to decompose on Ni/Al₂O₃ to form H₂ and CO at a significant rate until 450 K (7). During TPR, CH₃OH decomposition is inhibited. Thus, the HD and H₂ signals below 450 K cannot be due to CH₃OH decomposition. - TPD experiments carried out after interrupted TPR in D_2 flow show that D_2 and HD form at approximately the same temperatures as H_2 and CO (Fig. 6). Since previous TPD studies of CH_3OH (7), without interrupted TPR, show that CH_3OH decomposes to form H_2 and CO simultaneously, Fig. 6 indicates that D is incorporated into adsorbed CH_3OH during interrupted TPR. These experiments provide a direct measure of the composition of the resulting adsorbed species after exchange. The HD and D_2 products are the result of decomposition of $CH_xD_{3-x}OH$ and $CH_xD_{3-x}OD$. Exchange between gas-phase D_2 and adsorbed CH_3OH apparently occurs by a hydrogen spillover process. Methanol is adsorbed on the Al_2O_3 surface (7, 9) and D_2 adsorbs dissociatively on the Ni surface. Direct exchange between gas-phase D_2 and adsorbed CH_3OH is concluded to be much slower because: - For CH₃OH adsorbed on Al₂O₃ without Ni, a significant amount of D₂ was only consumed above 550 K. In contrast, D₂ consumption starts at 300 K for CH₃OH adsorbed on Ni/Al₂O₃. - Exchange between D₂ and CH₃OH is much slower on Ni/Al₂O₃ when CO is adsorbed on the Ni surface (Fig. 4). Adsorbed CO inhibits D₂ adsorption on Ni and thus inhibits exchange. As a result, the low-temperature HD and H₂ exchange peaks are absent. Since the experiment with coadsorbed CH₃OH and ¹³CO was carried out in 100% D₂, ¹³CO is very effective at inhibiting exchange. The low-temperature exchange occurs even in 3% D₂ when CO is not coadsorbed with CH₃OH. At higher temperatures CO is removed by hydrogenation and thus exchange takes place. Most likely the D atoms on Ni spill over and diffuse to adsorbed CH₃OH and exchange occurs on the Al₂O₃ surface. Hydrogen spillover has been reported to be fast even at room temperature by Ioannides and Verykios (13). They observed that exposure of a Ru/Al₂O₃ catalyst that had benzene adsorbed on the Al₂O₃ support formed cyclohexane at 298 K. Spillover hydrogen reacted with benzene to hydrogenate it at 298 K. It is possible, however, that adsorbed CH₃OH diffuses to the Ni/Al₂O₃ interface to exchange. This diffusion may be more important as the temperature increases, since CH₃OH decomposes on Ni/Al₂O₃ by diffusing along the Al₂O₃ surface to the Ni/Al₂O₃ interface (7). For TPR in D_2 flow, two HD and H_2 peaks are observed for adsorbed CH_3OH (Fig. 2) but only the high-temperature peaks are observed for adsorbed CH_3OD (Fig. 3). These experiments show that the low-temperature peaks (near 400 K) are due to exchange of the hydroxyl hydrogens since exchange between D_2 and the deuterated-labeled hydrogens in CH_3OD will not create HD or H_2 peaks. Similarly, for TPR in H_2 flow for adsorbed CH_3OD , only the low-temperature peaks are observed, and neither HD nor D_2 desorbed above 400 K. Therefore, the exchange peaks near 525 K are due to exchange of the methyl hydrogens. Therefore, hydroxyl hydrogen in methanol exchange much faster than methyl hydrogens, and hydrogen spillover is sufficiently fast so that the hydroxyl hydrogens exchange by 400 K. The rate of hydrogen exchange with the methyl groups in adsorbed methanol appears to be faster than the rate of methanol hydrogenation to form methane. Only a small amount of methane forms during interrupted TPR in H₂ flow to 445 K, for example, but a subsequent TPD (Fig. 6) shows that approximately 40% of the desorbing hydrogen is labeled with deuterium in the form of either HD or D₂. Our findings are consistent with those reported by Guczi et al. (14, 15). They observed that D_2 exchanges with CH₃OH much faster on Pt/Al₂O₃ than on Al₂O₃ or on Pt black. They concluded that Pt is required to dissociate D₂ and also that Pt cleaves the CH bond in CH₃O when it is adsorbed on an adjacent Al+ site. That is, they concluded that methoxide species are held on Lewis sites of Al₂O₃ and the CH₃ group can interact with the Pt. They stated that the majority of multiple exchanges take place at a metal-support perimeter. Unlike the studies of Guczi et al., we did not have gas-phase CH₃OH present during exchange, and thus we have shown that CH₃OH adsorbed on Al₂O₃ exchanges with H₂ adsorbed on the Ni. Thus, even CH₃OH that is not near the Ni-Al₂O₃ perimeter exchanges. The metal-support perimeter is important for this exchange, but we cannot determine whether exchange takes place at the perimeter or H diffuses onto the Al₂O₃ surface. Guczi et al. observed that OH groups in CH₃OH ex- change 2-3 orders of magnitude faster than CH₃ groups on their Pt/Al₂O₃ catalysts. We also see large differences in exchange rates on Ni/Al₂O₃. The peak temperatures of HD and H₂ peaks were used to estimate activation energies for OH exchange (108 kJ/mol) and CH₃ exchange (144 kJ/mol). These energies were obtained by assuming a preexponential factor of 10¹³ s⁻¹ and exchange rates were then calculated from these energies. The ratio of rates of OH to CH₃ exchange is 6 × 10⁴ at 400 K and 6×10^3 at 500 K. These differences in exchange rates are similar to those reported by Guczi et al., who also reported that CH₃ exchange has a higher activation energy. In order for exchange to occur rapidly, spillover must be rapid, and thus these exchange experiments provide a lower limit on the rate of spillover of H atoms from nickel to alumina. # Coadsorbed H2 and CO Similar processes take place during TPR for coadsorbed CO and H₂ (D₂) as for adsorbed CH₃OH. As shown previously (1, 7, 11), CO and H₂, when coadsorbed at 385 K on Ni/Al₂O₃, form CH₃O on the Al₂O₃ support. During TPR in 100% H_2 , the D atoms in coadsorbed CO + D_2 exchange with gas-phase H₂ to form HD and D₂ in two distinct peaks (Fig. 8). As shown in Fig. 9 for TPD without interrupted TPR (300 K interruption temperature) CH₃O formed from CO and H₂ does not start decomposing until 450 K, whereas exchange starts below 400 K (Fig. 8). The exchange peaks are not at the same temperature for CH₃OH as for coadsorbed CO and D₂. The low-temperatures peak in Fig. 8 is at a significantly higher temperature than the low-temperature peak in Fig. 2. This difference is not due to the presence of CO adsorbed on Ni when CO and H₂ are coadsorbed. The same TPR spectra as Fig. 8 were obtained when the catalyst was held in D_2 for 30 min, after CO + D₂ adsorption, in order to remove CO from Ni. The differences in the hydrogen-exchange spectra during TPR indicate that adsorbed CH₃OH and coadsorbed CO + H₂ do not form identical surface species on Al₂O₃. In addition to the different exchange properties, a low-temperature H₂ desorption peak is seen during TPD of coadsorbed CO + H₂ (Fig. 9), but is not seen during TPD of adsorbed CH₃OH. This H₂ desorption will be discussed in the next section. As seen for adsorbed CH₃OH, exchange with CH₃O is faster than hydrogenation to methane. When an interrupted TPR in D₂ flow is carried out to 480 K, after CO and H₂ are coadsorbed at 385 K, 73% of the hydrogen that desorbs during TPD (Fig. 12) is deuterated. Since only 26% of the original CH₃O is removed during TPR, exchange is faster than hydrogenation during interrupted TPR. The TPD experiment is an effective means to determine how much deuterium is incorporated into the ad- sorbed species. Note that more of the H in Fig. 12 is in the high-temperature peak, as expected since the species responsible for the low-temperature peak exchanges more rapidly. # Hydrogen Desorption The low-temperature exchange peak observed during TPR following CO + D_2 coadsorption (Fig. 8) occurs at a similar temperature to the low-temperature H₂ TPD peak that was seen for TPD after interrupted TPR in H₂ flow (Fig. 9). The low-temperature H₂ peak in Fig. 9 is not due to desorption of H₂ that is adsorbed on Ni because the amount is significantly larger than what adsorbs on the Ni surface. Also, exposing the catalyst to D₂ at 300 K after interrupted TPR did not cause the species responsible for the low-temperature TPD peak to exchange, whereas H₂ adsorbed on Ni readily exchanges with gas-phase D₂ at 300 K. Thus, the species responsible for the low-temperature H₂ exchange peak is not H on Ni. Moreover, since this H₂ peak is at a lower temperature than methyl hydrogens of adsorbed CH₃OH exchange, this hydrogen is not part of adsorbed CH₃O. A small HD peak (15 µmol/g catalyst) was seen below 500 K and this peak is attributed to desorption from the Ni surface. Since 26 µmol CO/g catalyst adsorbs on the Ni surface of this catalyst, the amount of HD desorbing from Ni is reasonable. Figure 8 shows that two CH₄ peaks are present during TPR of coadsorbed CO + H_2 (or D_2), and as has been shown previously (1), the CH₄ peak at 480 K is due to hydrogenation of CO adsorbed on Ni. During CO + H₂ coadsorption at 385 K, and during the subsequent cooling, some CO remains on the Ni surface. As can be seen from Fig. 8, interrupted TPR to 440 K and higher removes some of this CO from Ni by forming CH₄. In addition, some of this CO is converted to CH₃O, which remains on the Al₂O₃ surface. Thus, the TPD spectra in Fig. 9 at successively higher temperatures correspond to lower CO coverages on Ni. When ¹³CO is adsorbed after interrupted TPR, the low-temperature H₂ desorption peak is absent, and more H₂ desorbs at higher temperature instead. The total amount of H₂ desorption decreases by 13 µmol/g catalyst when ¹³CO is adsorbed; this amount corresponds approximately to the amount of Ni surface atoms. In contrast, CH_3OH adsorption does not form CO on Ni, as evidenced by the lack of a low-temperature CH_4 peak during TPR. Instead, CH_3OH adsorbs only on the Al_2O_3 surface (9). Despite the absence of CO on Ni, a low-temperature H_2 peak is not observed during TPD of CH_3OH , even when the same interrupted TPR procedure is used prior to TPD. Thus, the low-temperature H_2 TPD peak in Fig. 9 indicates that CH_3OH and $CO + H_2$ do not form identical species on the Al_2O_3 surface. The low-temperature H₂ TPD peak is concluded to be desorption of H₂ that is coadsorbed on the Al₂O₃ surface with CH₃O. Since this low-temperature H₂ peak is not accompanied by simultaneous desorption of CO, formation of this H₂ is not limited by decomposition of CH₃O. In contrast, the H₂ peak at 525 K is accompanied by simultaneous desorption of CO and thus represents CH₃O decomposition. Apparently H₂ in the low-temperature peak desorbs by first undergoing reverse spillover. Carbon monoxide adsorbed on the Ni surface inhibits reverse spillover, and thus in the presence of adsorbed CO, this H₂ desorbs at the same temperature that CH₃O decomposes. The higher pressure of H₂ during the interrupted TPR apparently inhibits this reverse spillover since many of the interrupt temperatures are above the peak temperatures of the low-temperature H₂ peaks observed during TPD. #### **CONCLUSIONS** Both methyl and hydroxyl hydrogens of CH₃OH adsorbed on the Al₂O₃ support of Ni/Al₂O₃ exchange with hydrogen atoms adsorbed on the Ni. Hydroxyl hydrogens exchange several orders of magnitude more rapidly than methyl hydrogens, and both types of exchange are faster than the rate that CH₃OH hydrogenates to CH₄. Temperature-programmed reaction allows the exchange steps and the reaction to be separated in time. Exchange takes place by spillover of H from the Ni surface and these experiments provide a lower limit on the rate of spillover of H atoms on Ni/Al₂O₃. Carbon monoxide adsorbed on Ni significantly inhibits exchange of the hydroxyl hydrogens. Methoxy formed from coadsorption of CO and H₂ at 385 K also exhibits two distinct exchange processes, but CH₃OH and coadsorbed CO + H₂ do not form identical species on the Al₂O₃ surface. An additional H₂ desorption peak observed when CO + H₂ are coadsorbed on Ni/Al₂O₃ results from H adsorbed on the Al₂O₃ surface. ## **ACKNOWLEDGMENTS** We gratefully acknowledge support by the National Science Foundation, Grant CTS 90-21194. We also thank Dr. Baoshu Chen for running several experiments that are reported here. ## **REFERENCES** - Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Phys. Chem. 92, 4474 (1988). - 2. Sen, B., and Falconer, J. L., J. Catal. 117, 404 (1989). - 3. Kester, K. B., and Falconer, J. L., J. Catal. 89, 380 (1984). - Sen, B., Falconer, J. L., Mao, T.-F., Yu, M., and Flesner, R. L., J. Catal. 126, 465 (1990). - 5. Matsushima, T., and White, J. M., J. Catal. 44, 183 (1976). - Rossi, P. F., Busca, G., and Lorenzelli, V., Z. Phys. Chem. NF 149, 99 (1986). - 7. Chen, B., and Falconer, J. L., J. Catal. 144, 214 (1993). - Falconer, J. L., and Schwarz, J. A., Catal. Rev. Sci. Eng. 25, 141 (1983). - 9. Chen, B., and Falconer, J. L., J. Catal. 147, 72 (1994). - 10. Chen, B., Falconer, J. L., and Chang, L., J. Catal. 127, 732 (1991). - Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Catal. 115, 24 (1989). - 12. Flesner, R. L., and Falconer, J. L., J. Catal. 133, 515 (1992). - 13. Ioannides, T., and Verykios, X. E., J. Catal. 143, 175 (1993). - 14. Guczi, L., Hoffer, T., and Tetenyi, P., Chem. Eng. Commun. 83, 75 (1989). - 15. Hoffer, T., and Guczi, L., J. Mol. Catal. 70, 85 (1991).